The Posteriori Error Estimations for p - Version Finite Element Methods in Square ⋆

نویسنده

  • Jianwei Zhou
چکیده

This paper considers the model problem in two-dimensional domain. The a posteriori error indicator for p-version Finite Element Methods (FEM) is discussed, and the reliable property of this a posteriori error indicator is investigated. Specially, we reformulate the a posteriori error indicator by orthogonal polynomials, which is easily used in practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress on A-posteriori Error Analysis for the p and h-p Finite Element Methods

This paper investigates recent progress on a-posteriori error analysis for the high-order finite element method(FEM). The paper will discuss the differences between a-posteriori error estimations for lower-order FEM and those for high-order FEM, and analyzes the technical and methodological differences on a-posteriori error estimations for high-order FEM in one dimension and in high dimensions....

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates

Abstract. For elliptic interface problems in two and three dimensions, this paper studies a priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in th...

متن کامل

A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs

We develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finiteelement methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent) energy norm. The bounds are explicit in the local mesh size and the local polynomial degree of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013